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analysis of1H NMR spectra of urine
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Abstract

NMR spectroscopic and statistical methods have been applied to investigate the biochemical variations within and between two phenotyp-
ically normal rat strains. The 600 MHz1H NMR spectra of urine were acquired as part of a series of drug toxicity studies from 450 control rat
urine samples from each of two strains of laboratory rat (Han Wistar and Sprague Dawley). The spectra were data-reduced to 256 intensity
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escriptors over a range ofδ 0.2–10.0. The spectral variation was analysed both within and between strains in terms of the mean,
eviation, skewness and kurtosis of each descriptor. It is demonstrated that spectral intensities corresponding to a number of
etabolites do not show Gaussian distributions and there is evidence for bimodality for some metabolites. Additionally, despite

imilarity of the NMR spectra from the two strains of rat, the descriptor distributions and the statistics derived from them revealed d
n the metabolite profiles, which clearly distinguished the two populations. This work is of value in the determination of biochemical n
nd variability, and thus can be used to investigate, and place confidence limits on the biochemical deviations, which arise as a c
f genetic modification or pathophysiological events.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The increased interest in the use of multivariate metabolic
rofiling methods for characterising disease states, toxicity
creening and understanding the biochemical consequences
f genetic modification necessitates a greater understanding
f the statistical features of the measurement variables that are
sed to classify samples.1H NMR spectroscopic analysis of
iofluids generates complex metabolic profiles, which can be
elated to the physiological states or pathological condition of
n organism[1]. In combination with multivariate statistical
nalysis, this technique has been applied to the characterisa-

ion of endogenous metabolites in biofluids, proving effective
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for monitoring disease states and for studying the toxici
pharmacologically active agents[2,3]. Furthermore, patter
recognition analysis of NMR spectroscopic data (NMR-
provides a means for classifying and predicting the phy
logical and pathophysiological status of complex organ
from time-related metabolic changes, a topic now design
as metabonomics[4–6]. High-resolution1H NMR spectra o
biofluids may contain resonances from hundreds or thous
of low molecular weight metabolites, but pattern recogni
(PR) can be performed on the NMR spectral signals w
out the need to assign all of the spectral peaks to sp
metabolites before analysis. In order to reduce the com
ity of such data, the spectra have often been segmente
discrete regions prior to PR analysis[7,8]. Typically, the leve
of reduction has been from 64k data points to∼250 integrate
spectral regions for a standard one-dimensional spectru[9].
Standard chemometric techniques such as principal co
nents analysis (PCA) or cluster analyses can then be u
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map these spectra in multivariate space where each sample
occupies a position in space based on its metabolite com-
position, which in turn is related to its physiological status.
Thus, samples which derive from inherently similar states,
e.g. two control samples or two samples obtained from rats
treated with a renal cortical toxin at a particular time, would
be expected to occupy a similar position in this multivariate
space, based on the similarity of their biochemical composi-
tion. The multivariate area occupied by each sample class of
toxicity or disease can be defined by mathematical models.
In addition, chemometric techniques such as PCA or clus-
ter analysis[10–12] allow the compression of multivariate
data into 2 or 3 dimensions, thus allowing the human eye to
distinguish clustering within the data.

Previous studies have shown that a number of different
target organ toxicities can be classified using these NMR-
PR based methods using urine samples and, moreover, that
novel combinations of urinary biomarkers can be derived
for each toxicity or disease state. For example, perturba-
tion of trimethylamine-N-oxide, dimethylamine, dimethyl-
glycine, citrate, 2-oxoglutarate,N-acetyl glycoproteins and
succinate is a biomarker pattern indicative of renal medullary
toxicity [13]. Although biomarkers of region-specific toxicity
can be clearly defined in many instances, the importance of
evaluating the scope of normal physiological variation within
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fact that they arose from different experimental studies over
a period of time and also included the effects of the time of
collection of the urine samples. Small but distinct differences
between studies could be resolved. The study has now been
extended to investigate variability in the two most commonly
used strain of laboratory rat. Having, a priori, established the
nature and extent of natural variation for each spectral re-
gion, it is then possible to determine the degree of confidence
with which toxin- or disease-induced metabolic variations in
urine profiles can be used for classification and biomarker
identification. In addition, with the completion of the genetic
sequences of a number of species, attention is turning to the
consequences of alterations in gene expression (functional
genomics). Since biochemical metabolic endpoints are the
ultimate consequences of such changes, it is suggested that
metabonomic approaches will prove useful in the interpreta-
tion and understanding of genetic modification.

2. Materials and methods

2.1. Animal handling and sample collection

As part of ongoing toxicology studies, control male
Sprague Dawley (SD) and Han Wistar (HW) rats were housed
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ontrol populations of experimental animals and human
een shown[8,14,15]. For example, spectral profiles can

nfluenced by physiological factors such as diet, time of s
ling, hormonal status, strain of animal model and leve
hysical activity. NMR-based metabonomic approaches
een shown to be capable of defining a metabolic signatu
ody fluids such as urine and plasma characteristic of s
r species in laboratory models. This metabolic signa
r metabotype can be related to differences in the ge
omposition of organisms and can be used to interpre
unctional consequences of genetic modification[16]. Previ-
us chemometrics studies have demonstrated clear met
ifferences in urine samples obtained from Sprague Da
SD) and Han Wistar (HW) rats and also from two genetic
istinct strains of mice[16,17]. Additionally this metaboli
rofiling approach has been successfully applied to phen

cally differentiating species ofEisenia(oligochaetes) base
n coelomic fluid samples[18].

In order to make inferences regarding variations in spe
rofile that relate to toxic or disease episodes, it is nece

o understand and account for this natural physiologica
enetic variation in endogenous metabolite profiles. In
tudy, a range of statistics (namely the mean, standard
tion, skewness and kurtosis) has been employed to an

he distribution of the urinary spectral descriptors for
ifferent but phenotypically normal rat strains. This exte
n earlier study, which investigated the statistical variab
ithin HW rats only[15]. This study also used the princip
omponents of the NMR data (up to 20 were necessar
arry out a linear discriminant analysis to attempt to se
or small differences in the spectra which were related to
n metabolism cages and urine samples collected daily
ach animal, totalling 450 samples from each strain of ra
tudies were conducted using the same basic protocol i
standard diet, Rat and Mouse Diet No. 1 (Special Die
ervices) was given to all animals and free access to foo
ater was permitted throughout the study. A temperatu
1 ± 2◦C and a relative humidity of 50± 10% was main

ained with a 12 h light/12 h dark cycle. On collection, ur
amples were centrifuged at 3000 rpm for 10 min, in o
o remove any solid debris, and were subsequently stor
70◦C pending1H NMR spectroscopic analysis.

.2. One-dimensional1H NMR spectroscopy of urine
amples and data reduction

An aliquot of urine (400�L) from each sample was plac
n a 5 mm outer diameter NMR tube together with 200 m
odium phosphate buffer (200�L) in order to minimize vari
nce in metabolite NMR chemical shifts arising from

erences in urinary pH. An internal reference standard
rimethylsilyl-[2,2,3,3-2H4]-propionate (TSP) made up to
nal concentration of 1 mM in D2O solution (50�L), was
dded to each sample. All samples were measured on a B
RX-600 NMR spectrometer (Bruker Biospin, Coven
K) at 300 K operating at 600.13 MHz for1H observation
or each sample, a one-dimensional NMR spectrum wa
uired with water peak suppression using a standard
equence (noesypresat, Bruker), using 64 free inductio
ays (FIDs), 64k data points, a spectral width of 12 376
n acquisition time of 2.65 s and a total pulse recycle

ay of 7.68 s. The FIDs were multiplied by an exponen
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Fig. 1. Representative 600 MHz1H NMR spectra of urine from Sprague Dawley (upper trace) and Han Wistar (lower trace) rats. DMG: dimethylglycine; TMAO:
trimethylamine-N-oxide; 2-OG: 2-oxoglutarate; HOD: residual water; NAGs:N-acetyl glycoprotein fragments;m-HPPA:meta-hydroxyphenylpropionic acid.

weighting function corresponding to a line broadening of
0.3 Hz prior to Fourier transformation, phasing and base line
correction.

The1H NMR spectra were reduced into consecutive inte-
grated spectral regions of width 0.04 ppm using AMIX soft-
ware (Bruker). The regionδ 4.52–6.00 was excluded from
the analysis in order to remove the effects of variations in the
suppression of the water resonance and variations in the urea
signal caused by cross saturation from exchanging protons. In
addition the regionδ −0.2 to 0.2 containing the internal refer-
ence (TSP) was excluded from statistical analyses. The data
were then imported into Excel (Microsoft®, Excel 97, SR-2)
and the integrated spectral regions normalised to the total sum
of the spectral regions. Since the integrals are thus expressed
in terms of relative intensities, it is difficult to distinguish be-
tween an absolute increase in one metabolite as opposed to
an absolute decrease in another. However, since in this study
all urine samples were taken from control animals, it was
expected that relative differences between samples would be
small compared to the overall spectral intensities and any
such effects would be minor. Nevertheless, this procedure of
normalisation to unit area partially removes any concentra-
tion differences, and hence is particularly useful in the case

of urine samples, as excretion volumes and hence metabolite
concentrations are highly variable.

2.3. Statistical analysis of data-reduced1H NMR
spectra

Standard statistics were computed for each spectral region
using the software package MATLAB (The MathWorks Inc.,
Natick, MA, Version 5.3.1 R11.1) The mean, standard de-
viation, skewness and kurtosis for each spectral region were
examined for each strain of rat and comparisons between SD
and HW rats were also made. The actual distributions of val-
ues for each of the descriptors were examined as histograms
over 10 intervals for all 900 samples. Distributions showing
evidence for bimodality were selected using three criteria: (a)
that the two peaks in the distribution were present at sufficient
signal to noise ratio (SNR) assuming Poisson counting statis-
tics (SNRcrit = 0.5), (b) that each peak contained at least 25%
of the samples and (c) that this evidence was present when the
distributions were computed using both 10 and 20 intervals.
A further selection of multi-modal distributions was made by
relaxing the last criterion to use only 20 intervals (giving an
expected Poisson counting error in each interval of∼15%).
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Fig. 2. Mean data-reduced1H NMR spectra of urine for the two rat strains. The lower trace shows the difference between the two mean spectra. The regionδ

4.5–6.0 has been excluded.

3. Results and discussion

3.1. Visual comparison of the1H NMR spectra

Representative1H NMR urine spectra for HW and SD rats
were are shown inFig. 1(A) and (B), respectively and found to
be visually similar. Typically, control urine spectra were dom-
inated by resonances from glucose, taurine, creatinine, hippu-
rate, citrate, 2-oxoglutarate, succinate and trimethylamine-N-
oxide. Resonances deriving from amino acids, organic acids,

Table 1
The NMR spectral regions with the 10 highest mean values

Rank Han Wistar Sprague Dawley Difference

Spectral regiona Mean (×10−2) Metabolite(s) Spectral regiona Mean (×10−2) Metabolite(s) Spectral regiona Metabolite(s)

1 2.70 4.19 Citrate 2.70 3.90 Citrate 3.02 2-OG
2 3.02 4.08 2-OG 2.58 3.24 Citrate 2.46 2-OG
3 2.58 3.84 Citrate 3.26 3.24 TMAO/taurine 2.74 Citrate
4 2.46 3.58 2-OG 3.02 2.79 2-OG 3.06 Creatinine
5 3.26 3.30 TMAO 2.46 2.72 2-OG 2.58 Citrate
6 2.74 3.00 Citrate 3.78 2.72 Complexb 3.86 Creatine
7 2.54 2.99 Citrate 3.74 2.67 Complexb 2.42 2-OG/succinate
8 3.98 2.47 Hippurate 2.54 2.62 Citrate 3.78 Complexb

9 3.78 2.23 Complexb 3.98 2.48 Hippurate 3.74 Complexb

10 3.74 2.21 Complexb 3.86 2.42 Complexb 3.82 Complexb

TMAO: trimethylamine-N-oxide, 2-OG: 2-oxoglutarate.
a Each spectral region comprises an integrated bin of width 0.04 ppm.

e, othe

creatine, acetate, acetoacetate, dimethylglycine,N-acetyl
glycoprotein fragments andm-hydroxyphenylpropionate (m-
HPPA) were also reasonably prominent in the urine spectra.
Although consistent strain-related differences in the spectra
are difficult to detect visually, previous work has shown that it
is possible to partially discriminate between these two strains
using soft independent modelling of class analogy (SIMCA),
a PCA-based technique[17], where specific strain-related
differences in the urinary profile were characterised. It was
shown that HW rats excreted higher concentrations, than SD
b A complex region with many overlapping resonances from glucos
 r sugars and�-protons of amino acids, especially Glu, Gln and Ala.
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Fig. 3. Standard deviation data-reduced spectra of urine for the two strains of rat.

rats, of lactate, acetate and taurine together with lower con-
centrations of hippurate.

3.2. Statistical analysisof the spectra

In order to better define the distribution of values for each
of the spectral descriptors for these two strains of rat, a series
of univariate statistics were calculated. To define a popula-
tion of control urine NMR spectra in multivariate space, it

Table 2
The spectral regions with the 10 highest standard deviations

Rank Han Wistar Sprague Dawley

Spectral region Standard deviation (×10−2) Metabolite(s) Spectral region Standard deviation (×10−2) Metabolite(s)

1 3.02 1.03 2-OG 2.70 1.75 Citrate
2 2.46 1.02 2-OG 3.02 1.25 2-OG
3 2.70 0.76 Citrate 2.58 1.20 Citrate
4 2.74 0.74 Citrate 2.54 1.09 Citrate
5 3.26 0.69 TMAO/taurine 2.46 1.08 2-OG
6 3.98 0.64 Hippurate 3.26 1.00 TMAO/taurine
7 2.58 0.56 Citrate 2.74 1.00 Citrate
8 3.42 0.53 Taurine 3.98 0.77 Hippurate
9 3.30 0.51 Taurine 3.42 0.59 Taurine

10 2.42 0.48 2-OG 3.78 0.53 Complexa

Abbreviations as inTable 1.
a e, othe

is possible to compute statistics based on individual spec-
tral descriptors. The mean of each spectral region gives the
position occupied by the average spectrum in the multivari-
ate space, while the standard deviation of each region gives
the extent of variation in each dimension. However, some
statistics (such as relative standard deviation, skewness and
kurtosis) are severely affected by a low mean value for a given
descriptor. The effect of this is to emphasise certain regions,
particularly the extreme edges of the spectrum where there are
A complex region with many overlapping resonances from glucos
 r sugars and�-protons of amino acids, especially Glu, Gln and Ala.
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Fig. 4. Relative standard deviation data-reduced spectra of urine for the two strains of rat (lower two panels). For reference the overall mean spectrum is also
shown (top panel).

no peaks and where the variation is caused entirely by noise
or residual baseline distortions. To circumvent this problem
the statistics for each descriptor were computed using only
those spectra which had values above a given threshold for
that descriptor. The threshold used (0.01% of the total spec-
tral integral) corresponded to approximately 0.2% the value
of the highest peak in the mean spectrum.

3.3. Mean NMR spectra

The mean segmented spectra for the two control rat pop-
ulations are shown inFig. 2. They are clearly alike, although
not identical, as can be seen from the difference spectrum
plotted beneath the two means. The metabolites represented
by the 10 largest mean values, have been assigned for both
the HW and SD groups and a list of the main differences
between the mean spectra for the two strains is given in
Table 1. As expected from simple visual analysis of the two
sets of spectra, citrate, glucose, 2-oxoglutarate, and hippu-
rate all have high mean values. Although the spectral regions
demonstrating the highest mean values were similar for both
strains of rat, slight differences between the two strains were
observed. For example, SD rats excreted relatively greater
concentrations of trimethylamine-N-oxide and glucose than
did HW rats, and this is consistent with earlier studies
[

3.4. Standard deviation and relative standard deviation
of the NMR spectra

The standard deviations of each chemical shift region,
plotted in the form of spectra are shown inFig. 3. The first
impression from this plot is that the standard deviation spec-
tra clearly resemble closely the mean spectra. This is largely
because the natural variation within each population causes
the larger spectral peaks to vary by larger amounts. How-
ever, some interesting regions of higher variation can be seen.
The standard deviation for spectral regions containing taurine
resonances (mid-region corresponding toδ 3.26 and 3.42)
was high for both HW and SD rats. Taurine excretion has
been shown to vary according to diurnal and hormonal cy-
cles [19], which can be problematical since increased ex-
cretion of taurine in episodes of hepatotoxicity has been
well documented[20]. The regions that contain NMR peaks,
with the 10 highest values of standard deviation are listed in
Table 2.

The fact that higher concentration metabolites are varying
to a larger extent implies that the important variation is ac-
tually how the amount of the metabolite varies with respect
to its normal (mean) value. Therefore, the relative standard
deviation spectra are plotted inFig. 4, defined as the stan-
dard deviation divided by the mean for each spectral region.
T
17].
 his plot is distinct in form to that shown inFigs. 2 and 3
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Fig. 5. Skewness data-reduced spectra of urine for the two populations (lower two panels). For reference the overall mean spectrum is also shown (top panel).

and hence the mean spectrum has been included inFig. 4for
reference.

Many of the regions with the highest relative variability,
as shown in the plots of the relative standard deviation, are
not associated with large peaks in the mean spectrum. Here,
and in the following identifications, the chemical shift of the
centre of each integrated spectral region is quoted and the
regions in decreasing order of variability as selected by each
statistic are discussed. Of the 10 regions having the highest
relative standard deviations, the most changeable are those
at δ 9.78, 9.26, 8.90 and 8.94 in SD andδ 6.10, 9.78, 8.58
and 9.30 in HW, identified with aromatic protons from nu-
cleoside bases. Following these, theδ 8.50 region containing
formate shows high variability, although more so for SD rats
than for HW rats. In both strains an unassigned NH reso-
nance atδ 9.78 is highly variable, as are the NH resonances
aroundδ 6.02 and 6.06 from allantoin; this is not surprising
since variable cross saturation is possible in different sam-
ples arising from the suppressed water resonance. In HW
rats, further variability arises from an unidentified singlet
resonance atδ 6.18. Finally, the regions atδ 7.54, 7.58 and
7.86 assigned to hippurate are shown to be more variable
in SD rats than in HW rats. Hippurate excretion has been
proved to be particularly susceptible to changes in popula-
tions of gut microflora[21]. In particular alteration of diet
h odal

distribution of hippurate and chlorogenic acid metabolites
[22].

3.5. Skewness and kurtosis of the NMR generated
metabolic profiles

To examine the departure of the populations from statis-
tical normality, the skewness and kurtosis spectra have also
been computed as shown inFigs. 5 and 6, respectively. The
skewness statistic is a measure of the asymmetry of the distri-
bution; a positive skewness indicates a tail extending toward
positive values while a negative skewness indicates a nega-
tive going tail. The kurtosis, on the other hand, measures the
importance of the wings of a distribution relative to that of
a normal distribution. Large wings relative to a normal dis-
tribution cause a positive kurtosis, while distributions with
relatively light tails result in negative kurtosis. For a normal
distribution, both the skewness and kurtosis are by definition
zero.

The first point to note fromFig. 5 is that the skewness
values are almost all positive. This indicates that the majority
of descriptor distributions have positive going tails, which
reflects the occasional increase of some endogenous metabo-
lites above their normal low level. This phenomenon could
arise where an alteration in baseline physiological status oc-
c rine
as been found to result in the development of a bim
 urred during the collection period. For example, if a u
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Fig. 6. Kurtosis data-reduced spectra of urine for the two populations (lower two panels). For reference the overall mean spectrum is also shown (upper panel).

sample was obtained from an animal that had not eaten for a
significant time, then a slight increase in lactate and ketone
bodies would be expected due to a physiological shift towards
triglyceride metabolism.

A number of significant peaks were identified in the skew-
ness spectrum, the highest of which in the SD strain arise
from lactate (δ 1.34), citrate (δ 2.66) and valine (δ 1.06).
Also positively skewed in SD samples, but to a lesser ex-
tent are acetate (δ 1.94) and lysine (δ 1.78). In HW rats, lac-
tate is also skewed (less strongly than in SD animals) along
with fumarate (δ 6.42) and formate (δ 8.50). Additionally for
HW urine samples, spectral regions relating to nucleoside
andN-methylnicotinamide resonances atδ 8.90, 8.94, 9.26
have high positive skew whereas similar molecular species
are highly skewed atδ 9.50, 9.34 and 9.22 in SD urine spectra.
Other highly skewed regions in HW samples included those
at δ 3.38 (partially assignable at least, toscyllo-inositol), δ
1.18 (�-hydroxybutyrate) andδ 6.94 (probably attributable
to a nucleoside resonance). However, the spectral integrals in
these regions arise from complex overlap of several signals
and therefore cannot be unequivocally assigned to a specific
metabolite.

Turning to the kurtosis spectrum as shown inFig. 6, one
again observes that most of the values are positive. This in-
dicates distributions differing significantly from Gaussian, in
a trong

peaks are seen in the kurtosis spectrum. In SD urine spectra,
the three highest peaks are seen to arise from lactate (δ 1.34),
citrate (δ 2.66) and valine (δ 1.06) as in the skewness spectra.
In contrast, by far the strongest peak in HW spectra was atδ

3.38 which has been assigned toscyllo-inositol. In general,
similar regions to those identified by the skewness statistic
are highlighted. However, in addition for HW spectra, creati-
nine (δ 4.02) also has a large kurtosis, while dimethylglycine
(δ 2.90), and lysine/arginine atδ 1.66 are also seen to have
high kurtosis in spectra generated from SD urine samples.

Citrate resonances contributed highly to the kurtosis spec-
trum for SD rats. The chemical shifts of citrate resonances
are particularly susceptible to changes in the normal phys-
iological pH range in urine. Although all the samples were
buffered to compensate for pH variation, calcium phosphate
precipitation in urine is not uncommon and this can affect
the pH after the buffer adjustment has been made. Studies
of the effect of buffering urine samples on citrate resonance
positions showed that it was possible for these to span more
than one integral region[23], and this could therefore lead to
highly kurtosed distributions.

3.6. Descriptor distributions

The statistical description of the control populations is fur-
t ather
greement with the skewness results. A number of very s
 her enhanced by comparing the actual distributions (r
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Fig. 7. Examples of the descriptor distributions for the two populations (filled: Han Wistar; open: Sprague Dawley). The number and chemical shift (inppm)
of the spectral region for each histogram are shown in the top right and top left corners, respectively.

than statistics based on those distributions). The distributions
were formedwithout thresholding, i.e. all regions from all
spectra were included. Some representative regions taken
from across the spectra are compared inFig. 7. The clear-
est message from this figure is that the distributions are not
always normal, confirming the statistical implications from
the preceding sections. The distributions often have tails ex-
tending to positive values, some are almost uniform across a
wide range of values and others hint at bimodality.

Comparing the pairs of distributions for both strains of
rat, one can see that they are often quite dissimilar, with the
differences not just in the mean or spread of the distribution,
but in the overall shape. For example, this is seen in the re-
gion atδ 2.58 (containing citrate), where the SD distribution
appears to be similar in shape to the HW one, but with an ad-
ditional tail extending to low values. Atδ 3.02, corresponding
to the region containing the tail of the creatinine resonance,
the HW distribution appears to be almost normal with per-

haps a slight positive skew. However, the SD distribution is
radically different with a relatively smooth descent from high
values around zero toward positive values.

3.7. Bimodal distributions

Distributions for the six regions showing the strongest ev-
idence for bimodality are shown inFig. 8(selected with his-
tograms using both 10 and 20 intervals). There is clear objec-
tive evidence that many of the distributions are not unimodal.
In particular, the regions atδ 7.82, 7.54 and also 3.98 (not
shown) corresponding to hippurate show very similar distri-
butions with at least two different populations contributing.
As discussed previously, hippurate excretion is highly vari-
able and is partially dependant upon the gut microflora in the
host organism. Dimethylamine, with a peak atδ 2.74 (slightly
overlapped with one of the citrate resonances), shows further
clear evidence for bimodality. Although the exact amount
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Fig. 8. Distributions of the six descriptors showing the best evidence for bimodality. The chemical shift of each spectral region is shown in the top left of each
plot.

of protein in rat chow is carefully regulated, the protein
source can vary from batch to batch. Variation in methy-
lamines is likely to result from dietary differences in the
protein source as fish contain a high concentration of these
compounds[24]. As these studies were conducted over a
period of several weeks, it is possible that dietary variation
in fish protein is responsible for the bimodal distribution in
dimethylamine. Other regions showing less significant evi-
dence for multi-modality areN-methylnicotinic acid (δ 9.10),
aromatic protons from nucleoside bases atδ 8.98 and 8.90, fu-
marate (δ 6.42), 2-oxoglutarate (δ 3.02), methyl groups from
isoleucine/leucine together with unidentified resonances atδ

8.06 and 6.08.

3.8. Implications of strain-related differences in
metabolite distributions to toxicological and functional
genomic studies

This work shows the value of the combination of NMR
spectroscopy and statistical evaluation as a tool in the gen-
eration and analysis of multivariate biochemical information
that can be used to investigate strain and individual variation

in experimental mammals. Specifically, the statistical varia-
tions in specific spectral regions of the1H NMR urine spectra
obtained from control SD and HW rats have been defined. Al-
though visually the1H NMR urine spectra for the two strains
showed a high degree of similarity in the excretion patterns
of major metabolites, the strains were clearly distinguishable.
This concurs with previous studies showing significant differ-
ences in pathway flux and excretion between closely related
strains or species of animal model[16,17]. Such metabolic
pattern differences in animals kept in rigorously controlled
environments are likely to be strongly reflective of differ-
ences in gene expression or protein activity in selected tissues
due to polymorphisms of phenotypically silent genes in each
strain. Diet, hormonal and diurnal variations can also con-
tribute to variability, but although the samples come from a
variety of studies, these are all control samples and such dif-
ferences are small compared to changes caused by toxins and
diseases. In addition, the gut microflora might well be differ-
ent across the samples. These data also confirm that certain
spectral regions corresponding to particular metabolites, and
hence pathways, are hyper-variable even within strain. How-
ever, even for regions showing relatively large variations in
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profile, such statistical analysis enable placement of confi-
dence limits on the significance of toxin or disease-induced
variations in metabolic profile.

We have show that, in addition to the variation in the quan-
titative metabolite pattern, the statistical distribution of the
pattern differences can convey information regarding poly-
morphic variability in gene functions relative to metabolic
fluxes. Moreover, this variation due to polymorphism in ani-
mal populations may be important in understanding the vari-
ability in response of a given population to a stressor such
as toxic insult or disease processes. Differences in the dis-
tributions of metabolite levels demonstrate that NMR-based
metabonomics can be used to characterise the metabotype,
which relates to the genotypic differences. Hence it can be
envisaged that there will be an increase in the use of metabo-
nomic technology in functional genomics, with applications
including metabotyping of transgenic and knockout organ-
isms, characterising both witting and unwitting effects of ge-
netic modification[6], understanding the biochemical conse-
quences of genetic modification and evaluating the response
of genetically modified organisms to disease or therapy.
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